Objective & Motivation

Day-ahead Optimal Scheduling

- The proposed method uses the PV inverter, OLTC, and SCB to minimize:
 - Node voltage deviation
 - Power losses
- The optimal scheduling for the next day is based on:
 - the forecast values of PV real power generation
 - The forecast values of load demand.

Optimization Problem

- Decision variables:
 \[x = \{Q^t_{PV}, Tap^t, SC^t\}, t = 1,2, ..., T \]
- Objective function:
 \[F = \sum_{t=1}^{T} (w_1 \times \sum_{i=1}^{N_{node}} (V_i^t - V_{Mi})^2 + w_2 \times \sum_{j=1}^{N_{PV}} P_{j}^t) \]
- Constraints:
 - Distribution power balance equations:
 \[P_k = V_K \sum_{n=1}^{N_{PV}} V_n \cos(\delta_k - \delta_n - \theta_{kn}) \]
 \[Q_k = V_K \sum_{n=1}^{N_{PV}} V_n \sin(\delta_k - \delta_n - \theta_{kn}) \]
 - Reactive power limit of PV generation:
 \[-\sqrt{S_{PV}^2 - (P_{PV}^t)^2} \leq Q_{PV}^t \leq \sqrt{S_{PV}^2 - (P_{PV}^t)^2} \]
 - Limit of tap position:
 \[Tap^U \leq Tap^t \leq Tap^U \]
 - Limit of the tap operations within a day:
 \[TTO \leq TTO_{max} \]
 - Limit of the shunt capacitor operations within a day:
 \[TSC \leq TSC_{max} \]

- The proposed problem is a constrained, non-convex, mix-integer optimization problem:
 - Reactive power of PV inverter (continuous variables)
 - Tap position of OLTC (discrete variables)
 - Switch state of SCB (Boolean variables)

- Algorithms:
 - The Pattern Search Algorithm
 - The Genetic Algorithm.

References